Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbes Infect ; 25(8): 105179, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37394112

RESUMO

TNF and IFN-γ trigger cell damage during SARS CoV-2 infection; these cytokines can induce senescence and a cell death process called PANoptosis. This study included 138 vaccine-naïve COVID-19 patients, who were divided into four groups (Gp) according to the plasma level of TNF and IFN-γ (High [Hi] or Normal-Low [No-Low]), Gp 1: TNFHi/IFNγHi; Gp 2: TNFHi/IFNγNo-Low; Gp 3: TNFNo-Low/IFNγHi; and Gp 4: TNFNo-Low/IFNγNo-Low. Thirty-five apoptosis-related proteins and molecules related to cell death and senescence were evaluated. Our results showed that groups did not display differences in age and comorbidities. However, 81% of the Gp 1 patients had severe COVID-19, and 44% died. Notably, the p21/CDKN1A was increased in Gp 2 and Gp 3. Moreover, Gp 1 showed higher TNFR1, MLKL, RIPK1, NLRP3, Caspase 1, and HMGB-1 levels, suggesting elevated TNF and IFN-γ levels simultaneously activate diverse cell death pathways because it is not observed when only one of these cytokines is increased. Thus, high TNF/IFN-γ levels are predominant in severe COVID-19 status, and patients display cell alterations associated with the activation of diverse cell death pathways, including a possible senescent phenotype.


Assuntos
COVID-19 , Interferon gama , Humanos , Morte Celular , Citocinas , Interferon gama/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
2.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34445140

RESUMO

Overproduction of inflammatory cytokines is a keystone event in COVID-19 pathogenesis; TNF and its receptors (TNFR1 and TNFR2) are critical pro-inflammatory molecules. ADAM17 releases the soluble (sol) forms of TNF, TNFR1, and TNFR2. This study evaluated TNF, TNFRs, and ADAM17 at the protein, transcriptional, and gene levels in COVID-19 patients with different levels of disease severity. In total, 102 patients were divided into mild, moderate, and severe condition groups. A group of healthy donors (HD; n = 25) was included. Our data showed that solTNFR1 and solTNFR2 were elevated among the COVID-19 patients (p < 0.0001), without increasing the transcriptional level. Only solTNFR1 was higher in the severe group as compared to the mildly ill (p < 0.01), and the level was higher in COVID-19 patients who died than those that survived (p < 0.0001). The solTNFR1 level had a discrete negative correlation with C-reactive protein (p = 0.006, Rho = -0.33). The solADAM17 level was higher in severe as compared to mild disease conditions (p < 0.01), as well as in COVID-19 patients who died as compared to those that survived (p < 0.001). Additionally, a potential association between polymorphism TNFRSF1A:rs767455 and a severe degree of disease was suggested. These data suggest that solTNFR1 and solADAM17 are increased in severe conditions. solTNFR1 should be considered a potential target in the development of new therapeutic options.


Assuntos
Proteína ADAM17 , COVID-19/imunologia , Receptores Tipo I de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa , Proteína ADAM17/sangue , Proteína ADAM17/imunologia , Adulto , Idoso , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptores Tipo I de Fatores de Necrose Tumoral/sangue , Índice de Gravidade de Doença , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/imunologia
3.
Bosn J Basic Med Sci ; 21(5): 503-514, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33596401

RESUMO

COVID-19 is the current pandemic caused by the novel coronavirus, SARS-CoV-2, that emerged from China at the end of December 2019. The scientific community is making extraordinary efforts to understand the virus structure and the pathophysiology and immunological processes activated in the host, in order to identify biomarkers, diagnostic tools, treatments, and vaccines to decrease COVID-19 incidence and mortality. Various abnormalities have been noted during SARS-CoV-2 infection both in lymphoid and myeloid cells. Such abnormalities may disturb the immune system function and cause a massive inflammatory response that impairs tissue function. This review discusses the close relationship between the immune system abnormalities and the broad spectrum of clinical manifestations, including fibrosis, in the context of COVID-19 disease. Moreover, we described the current strategies for COVID-19 diagnosis, and we provide a summary of the most useful clinical laboratory parameters to identify severe COVID-19 patients.


Assuntos
Teste para COVID-19 , COVID-19/diagnóstico , COVID-19/imunologia , SARS-CoV-2/isolamento & purificação , COVID-19/complicações , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...